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1 Introduction

Classical open string solutions in the anti-de Sitter (AdS) space with null boundaries give

the scattering amplitudes in planar N = 4 super Yang-Mills theory at strong coupling [1]

(for a review, see for example, [2]). Because of this, the problem of finding such solutions

have attracted much attention [3]–[11]. Though the solution with four null boundaries and

cusps is found in [1, 12], finding the solutions with more than four cusps is still challenging.

Recently, a prescription to construct multi-cusp solutions is provided in [13]. There, it is

also discussed how to compute the scattering amplitudes without using explicit form of the

solutions, and this is demonstrated in the case of the eight-cusp solutions. Regarding the

numerical multi-cusp solutions, see [6].

With applications to the scattering amplitudes in mind, we discuss the classical open

string solutions in AdS3. For this purpose, a good starting point would be a general con-

struction of the classical string solutions in dS2n+1 [14], where the solutions are expressed

by theta functions and integrals defined over the underlying spectral curve. This construc-
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tion can also be applied to AdS2n+1.
1 However, for constructing relatively simple solutions,

it may be easier to make an ansatz of the finite-gap form (i.e., the general form implied

by [14]), where one regards the periods and the integrals as free paramters, and search for

particular solutions which satisfy definite reality, Virasoro and boundary conditions.

In this paper, we take this approach for the genus-one finite-gap solutions (elliptic

solutions). We determine the parameters of the solutions by explicitly solving the equations

of motion, and the reality and Virasoro conditions. As a result, we give a classification

of the allowed genus-one finite-gap solutions. When the elliptic modulus degenerates, we

also find a class of solutions with six null boundaries, among which two pairs are collinear.

The solutions are expressed simply by hyperbolic and exponential functions, and describe

non-flat minimal surfaces in AdS3. The analysis can be generalized to the classical string

solutions in AdS5 × S5. By adding S1, as a simple example, we find four-cusp solutions

with null boundaries expressed by elliptic functions.

The rest of this paper is organized as follows. In section 2, starting with the genus-one

finite-gap form, we solve the equations of motion and the normalization condition. We then

summarize the Virasoro condition and the reality condition. By solving these conditions,

we determine the allowed solutions and give a classification in section 3. In section 4, we

discuss examples of the solutions. In particular, we present a class of solutions with six null

boundaries. In section 5, we analyze the case of the strings in AdS3×S1, and find four-cusp

solutions expressed by the elliptic functions. We conclude with a discussion in section 6.

The appendix includes our conventions and some formulas of the elliptic theta functions.

2 Genus-one finite-gap solutions

We begin with parametrizing the AdS3 target space by the embedding coordinates in R2,2,

namely, Ya(σ+, σ−), a = −1, 0, 1, 2, with a constraint

~Y · ~Y := −Y 2
−1 − Y 2

0 + Y 2
1 + Y 2

2 = −1 . (2.1)

They satisfy the equations of motion

∂+∂−~Y − (∂+
~Y · ∂−~Y )~Y = 0 , (2.2)

and the Virasoro constraints

(∂±~Y )2 = 0 . (2.3)

The solutions span minimal surfaces in AdS3. In the following, we concentrate on the

Euclidean world-sheet with (σ+)∗ = σ−. The case of the Lorentzian world-sheet can be

discussed similarly.

1For the closed strings in AdS3 × S1, another general construction is given in [15]. Explicit genus-one

finite-gap solutions are discussed in [16].
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To find the solutions, we introduce the vector ~ϕ = (ϕ1, ϕ
σ
1 , ϕ2, ϕ

σ
2 ) which satisfies

1 =

2
∑

j=1

ϕjϕ
σ
j , (2.4)

0 = (∂+∂− + u)~ϕ , (2.5)

0 =

2
∑

j=1

∂±ϕj∂±ϕσ
j , (2.6)

with the self-consistent potential

u =
1

2

2
∑

j=1

(

∂+ϕj∂−ϕσ
j + ∂−ϕj∂+ϕσ

j

)

. (2.7)

The equations (2.4)–(2.6) are equivalent to (2.1)–(2.3) under the identification ϕ = Y ,

where

ϕ :=

(

ϕ1 ϕ2

−ϕσ
2 ϕσ

1

)

, Y :=

(

Y−1 + Y2 Y1 + Y0

Y1 − Y0 Y−1 − Y2

)

. (2.8)

As discussed shortly, more general identifications between ϕ and Y are possible.

In the genus-one case, the finite-gap solution to (2.4)–(2.6) takes the form [14]

ϕj = rj
ϑ3(X0)ϑ0(X + Aj)

ϑ3(X0 + Aj)ϑ0(X)
ep+

j σ++p−j σ− ,

ϕσ
j = rσ

j

ϑ3(X0)ϑ0(X − Aj)

ϑ3(X0 − Aj)ϑ0(X)
e−(p+

j
σ++p−

j
σ−) . (2.9)

Here,

X = U+σ+ + U−σ− + X0 − K(k) , (2.10)

and K(k) is the complete elliptic integral of the first kind with k the elliptic modulus.

ϑa(z) are the elliptic theta functions which have the quasi-periods (2K(k), 2iK ′(k)) with

K ′(k) = K(k′) and (k′)2 = 1 − k2. Compared with the standard notation, we have

rescaled the argument of the theta functions by 2K. With this convention, for example,

ϑ0(z + K) = ϑ3(z) and sn z = ϑ3(0)ϑ1(z)/ϑ2(0)ϑ0(z). To make the following expressions

simpler, we have shifted X by K as in (2.10), which results in the combination of ϑ3 and

ϑ0 in ϕ. Our conventions of the elliptic theta functions are summarized in the appendix.

Other parameters should be determined by imposing appropriate conditions. First,

one finds that the normalization condition (2.4) gives

r1r
σ
1 =

sn2A2(1 − k2sn2A1 cd2X0)

sn2A2 − sn2A1
, r2r

σ
2 =

sn2A1(1 − k2sn2A2 cd2X0)

sn2A1 − sn2A2
, (2.11)
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for A1 6= A2. The case of A1 = A2 is discussed later in section 3.3.2 In deriving this, we

have used

ϕjϕ
σ
j = rjr

σ
j

1 + (kk′)2 sd2(X + K) sd2Aj

1 + (kk′)2 sd2X0 sd2Aj

= rjr
σ
j

1 − k2sn2Aj sn2X

1 − k2sn2Aj cd2X0

, (2.12)

which follow from product identities of ϑa.

Next, to consider the equations of motion, we introduce

β±
j := Z(Aj) +

p±j
U± , (2.13)

where Z(z) := ∂z lnϑ0(z). With the help of the formula (A.3), one then obtains

∂+∂−ϕj

ϕj
= U+U−

[

(

k2sn Aj sn X sn(X + Aj) − β+
j

)(

k2snAj sn X sn(X + Aj) − β−
j

)

−k2sn2(X + Aj) + k2sn2X

]

, (2.14)

and similar equations for ϕσ
j with Aj , p

±
j replaced by −Aj ,−p±j . For these to be equated

with −u, the X-dependence should be common to all ϕj , ϕ
σ
j . This requirement fixes β±

j as

β+
j + β−

j = −2cn Aj dnAj

snAj
,

β+
j β−

j = k2sn2Aj + u0, (2.15)

where u0 is a constant. Substituting these, one obtains

∂+∂−ϕj

ϕj
= U+U−(2k2sn2X + u0). (2.16)

On the other hand, the potential u in (2.7) is evaluated using the equations for ϕjϕ
σ
j

in (2.12). Some computations show that −u is indeed given by the right-hand side of (2.16),

which verifies the equations of motion.

Third, let us turn to the Virasoro condition. Again, after some algebra, one finds that

the constraint

2
∑

j=1

(

U−

U+
∂+ϕj∂+ϕσ

j +
U+

U−∂−ϕj∂−ϕσ
j

)

= 0 (2.17)

determines the constant u0 = −u(X = 0)/U+U− to be

u0 = 2

(

1

sn2A1
+

1

sn2A2
− 1 − k2

)

, (2.18)

2 In addition, when Aj = 0, iK′, some of the expressions below become singular. In the case of Aj = 0,

the solution becomes of the exponential type without the theta functions. The case with Aj = iK′ is

treated as a limiting case from Aj 6= iK′.
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whereas the other constraint reads

0 =
2
∑

j=1

(

U−

U+
∂+ϕj∂+ϕσ

j − U+

U−∂−ϕj∂−ϕσ
j

)

= 2U+U− sn2A1 sn2A2

sn2A2 − sn2A1

2
∑

j=1

(−)j+1 cn Aj dnAj

sn3Aj
(β+

j − β−
j ) . (2.19)

In terms of a := sn2A1, b := sn2A2, this is equivalent to

(a + b − ab)(a + b − k2ab)(a + b − (1 + k2)ab) = 0 , (2.20)

the solutions of which are

(i) cn A1 cn A2 = ±1, (ii) dnA1 dnA2 = ±1, (iii) cd A1 cd A2 = ±1. (2.21)

In each of these three cases, one finds that

(i) u0 = −2k2, (ii) u0 = −2, (iii) u0 = 0, (2.22)

and

(i) u = 2k2U+U−cn2X, (ii) u = 2U+U−dn2X, (iii) u = −2k2U+U−sn2X. (2.23)

The final condition to be imposed is the reality condition, for which we need to know

the allowed identifications between ϕ and Y . In order to analyze these, we note that, from

det ϕ = det Y = 1 and the equations of motion, the two matrices should be related by

constant SL(2, C) matrices U, V as UϕV = Y . This implies that Y −1dY = V −1ϕ−1dϕV ,

and that the tangent spaces of Y and ϕ are isomorphic. Since Y is an SL(2, R) matrix, ϕ

should generically be an element of SL(2, R) or SU(1, 1). Therefore, there are two cases for

the reality condition:

(I) ϕ∗
j = ϕj , (ϕσ

j )∗ = ϕσ
j for ϕ ∈ SL(2, R) ,

(II) ϕ∗
1 = ϕσ

1 , ϕ∗
2 = −ϕσ

2 for ϕ ∈ SU(1, 1) , (2.24)

(up to the exchange of ϕ1, ϕ
σ
1 and ϕ2, ϕ

σ
2 ). In each case, the AdS solution Y is identified

with ϕ as

(I) ϕ = Y , (II) ϕ = M−1Y M =

(

Y−1 + iY0 Y1 + iY2

Y1 − iY2 Y−1 − iY0

)

, (2.25)

up to SL(2, R) and SU(1, 1) transformations, respectively, where M = 1√
2

(

1 i

i 1

)

. In both

cases, the potential takes the form u = −∂+
~Y · ∂−~Y , from which one can read off the

conformal factor of the induced metric and hence the curvature of the surface described by

the solution.

In the following, we set q = eπiτ (τ = iK ′/K) in the theta functions to be real, which

implies 0 ≤ k2 ≤ 1. When q is complex, the reality conditions may not be satisfied.
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3 Solving reality and Virasoro conditions

In this section, we solve the reality and Virasoro conditions which are listed in the previous

section. First, we concentrate on the case where ϕ ∈ SL(2, R). The other case with

ϕ ∈ SU(1, 1) is discussed later.

3.1 Reality condition

When ϕ ∈ SL(2, R), the reality condition is (I) in (2.24). For this to be satisfied for arbi-

trary σ±, the theta functions ϑ0(X), ϑ0(X + Aj) should be real or purely imaginary (after

extracting the exponential factors due to possible shifts in (X,Aj) by iK ′). This implies

that (X,Aj) are real or purely imaginary up to the shifts nK+imK ′, under which ϑa trans-

form as ϑa(u+nK+imK ′) = (factor)×ϑb(u) according to (A.4). Furthermore, since ϑa(u+

2K) = ±ϑa(u), ϑa(u + 2iK ′) = ±e−πi( u
K

+τ)ϑa(u), we have only to consider 0,K, iK ′,K +

iK ′ as the shifts: other cases reduce to these cases by absorbing the factors into rj and

p±j . Consequently, it is enough to assume that Aj are in the fundamental region spanned

by (0, 2K, 2iK ′, 2K + 2iK ′) with segments [2K, 2K + 2iK ′], [2iK ′, 2K + 2iK ′] removed.

Therefore, we have four cases of (X,Aj):

(1) X ∈ R or R + iK ′ and Aj = aj (aj ∈ R) ,

(2) X ∈ R or R + iK ′ and Aj = aj + iK ′ (aj ∈ R) ,

(3) X ∈ iR or iR + K and Aj = iaj (aj ∈ R) ,

(4) X ∈ iR or iR + K and Aj = iaj + K (aj ∈ R) .

(3.1)

In addition, after the possible shifts of iK ′ in (X,Aj) are taken into account, real solutions

for ϕ ∈ SL(2, R) must be transformed into the canonical form where rj , r
σ
j and exponentials

in ϕ are real. These impose restrictions on β±
j .

Let us discuss these conditions in more detail, e.g., in case (2). In this case, U+σ+ +

U−σ− is real, which implies (U+)∗ = U− and X0 − K ∈ R or R + iK ′. When X0 − K ∈
R + iK ′, the shift of iK ′ results in a constant factor to the ratio of the theta functions,

which we absorb into rj , r
σ
j . As for the shift iK ′ in Aj , extracting it from ϑ0 gives

ϕj ∼ θ1(X + aj)

θ0(X)
eq+

j σ++q−j σ− , q±j = p±j − πi

2K
U± ,

Z(aj + iK ′) = − πi

2K
+ Z1(aj) , Z1(z) := ∂z ln ϑ1(z) , (3.2)

and similarly for ϕσ
j with the signs of aj, q

±
j flipped. The exponent after the shift should be

real and thus (q+
j )∗ = q−j . Note that (q+

j /U+)∗ = q−j /U−, Z1(aj) ∈ R, and the conditions

from the equations of motion (2.15) read

β+
j + β−

j = 2
dnaj cn aj

sn aj
∈ R , β+

j β−
j = ns2aj + u0 ∈ R. (3.3)

On the other hand, from the definition of β±
j , (2.13), it follows that

β±
j = Z1(aj) +

q±j
U± , (3.4)

– 6 –
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and hence (β+
j )∗ = β−

j . For given k, aj , U
±, the real part of β±

j (or p±j /U±) is determined

by the first equation in (3.3), whereas the imaginary part is consistently determined by the

second, if

∆βj
:=

1

4
(β+

j − β−
j )2 =

1

sn2Aj
− (1 + k2 + u0) ≤ 0 , (3.5)

with 1/sn2Aj = k2sn2aj.

Similarly analyzing other cases, we find that the reality condition imposes

∆βj
≤ 0 for (1) (2) , ∆βj

≥ 0 for (3) (4) . (3.6)

Applying the value of u0 in (2.22), these are solved in each case, which imposes the following

conditions:

(1) Aj = aj (aj ∈ R)

(i) k′ = sn2aj = 1;

(ii) (no solutions);

(iii) sn2aj ≥ 1
1+k2 .

(2) Aj = aj + iK ′ (aj ∈ R)

(i) sn2aj ≤ (k′)2

k2 ;

(ii) (no solutions);

(iii) (automatic).

(3) Aj = iaj (aj ∈ R)

(i) (no solutions);

(ii) sn2(aj, k
′) ≥ 1

1+(k′)2
;

(iii) (no solutions).

(4) Aj = iaj + K (aj ∈ R)

(i) sn2(aj, k
′) ≤ k2

(k′)2
;

(ii) (automatic) ;

(iii) k = aj = 0.

In the table, “no solutions” indicates the cases where the solutions do not exit, whereas

“automatic” indicates the cases where the reality condition is automatically satisfied and

imposes no restrictions. The cases where β±
j are diverging have also been excluded. We

have also omitted the values of X in the above.

We remark that, when considering both ϕ1, ϕ
σ
1 and ϕ2, ϕ

σ
2 , X is common and only the

combinations among cases (1) and (2), or (3) and (4) are allowed.

– 7 –
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3.2 Virasoro condition

From the discussion in the previous section, we find that there are six cases of the com-

binations of (A1, A2). In each combination, there are three possibilities of satisfying the

Virasoro condition as in (2.21). It is straightforward to write down the explicit from of the

condition in each case and check whether it has solutions or not.

For example, when A1 = ia1, A2 = ia2 (a1, a2 ∈ R), the condition of case (i) in (2.21)

reads nc(a1, k
′) nc(a2, k

′) = ±1. Since nc2u ≥ 1 for real u, the condition is satisfied

only when a1 = a2 = 0. When A1,2 = a1,2 + iK ′ (a1,2 ∈ R), the condition of case (i)

in (2.21) reads −k−2ds a1 dsa2 = ±1. Since ds2u ≥ (k′)2 for real u, the condition has

solutions when 1/2 ≤ k2.

Repeating similar analysis for all cases, one finds that the Virasoro constraints impose

the following conditions:

1-1. A1 = a1, A2 = a2 (aj ∈ R)

(i) a1,2 = 0;

(ii) a1,2 = 0 or k = 0;

(iii) a1,2 = 0 or k = 1.

2-2. A1 = a1 + iK ′, A2 = a2 + iK ′ (aj ∈ R)

(i) k2sd a1 sd a2 = ±1 and 1
2 ≤ k2;

(ii) sc a1 sc a2 = ±1;

(iii) k = 1.

1-2. A1 = a1, A2 = a2 + iK ′ (aj ∈ R)

(i) (no solutions);

(ii) (no solutions);

(iii) k dc a1 cd a2 = ±1.

3-3. A1 = ia1, A2 = ia2 (aj ∈ R)

(i) a1,2 = 0;

(ii) a1,2 = 0 or k = 0;

(iii) a1,2 = 0 or k = 1.

4-4. A1 = ia1 + K, A2 = ia2 + K (aj ∈ R)

(i) (k′)2sd(a1, k
′) sd(a2, k

′) = ±1 and 1
2 ≥ k2;

(ii) k = 0;

(iii) sc(a1, k
′) sc(a2, k

′) = ±1.

3-4. A1 = ia1, A2 = ia2 + K (aj ∈ R)

– 8 –
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(i) (no solutions);

(ii) k′ dc(a1, k
′) cd(a2, k

′) = ±1;

(iii) (no solutions).

3.3 Classification

Combining the tables in the previous two subsections, we can determine the allowed cases

and their conditions:

1-1. A1 = a1, A2 = a2 (aj ∈ R)

(i) (no solutions);

(ii) (no solutions);

(iii) k = 1 and sn2a1,2 ≥ 1
2 .

2-2. A1 = a1 + iK ′, A2 = a2 + iK ′ (aj ∈ R)

(i) k2 = 1
2 and sn2a1,2 = 1;

(ii) (no solutions);

(iii) k = 1.

1-2. A1 = a1, A2 = a2 + iK ′ (aj ∈ R)

(i) (no solutions);

(ii) (no solutions);

(iii) k dc a1 cd a2 = ±1 and sn2a1 ≥ 1
1+k2 .

3-3. A1 = ia1, A2 = ia2 (aj ∈ R)

(i) (no solutions);

(ii) k = 0 and sn2(a1,2, k
′) ≥ 1

2 ;

(iii) (no solutions).

4-4. A1 = ia1 + K, A2 = ia2 + K (aj ∈ R)

(i) k2 = 1
2 and sn2(a1,2, k

′) = 1;

(ii) k = 0;

(iii) (no solutions).

3-4. A1 = ia1, A2 = ia2 + K (aj ∈ R)

(i) (no solutions);

(ii) k′ dc(a1, k
′) cd(a2, k

′) = ±1 and sn2(a1, k
′) ≥ 1

1+(k′)2
;

(iii) (no solutions).

– 9 –



J
H
E
P
1
0
(
2
0
0
9
)
0
0
1

We note that the result is symmetric between the real and the imaginary Aj. This is

a consequence of the modular transformation τ → −1/τ with purely imaginary τ . In fact,

one can check that ϕ in the first three cases are mapped to the last three, up to certain

factors which can be absorbed into the exponential factors and the normalization constants

of ϕ. Some asymmetries in the intermediate stage of the analysis are due to having started

with the fixed exponents in ϕ.

From this result, one finds that the allowed solutions fall into three types. One is the

solution with k 6= 0, 1 and A1 6= A2 as in 1-2 (iii) and 3-4 (ii). Such solutions are expressed

by the elliptic functions, as we initially intended. We call this type of solutions “elliptic so-

lution”.

The second one is the solution with k = 0 or 1 and A1 6= A2. In this case, the elliptic

functions degenerate and the solutions become simpler. One has to be a little careful in

taking k = 0, 1, since K ′,K are singular, respectively. For k = 0 as in 3-3 (ii) and 4-4 (ii),

q = eiπτ is vanishing and ϑ0(X) reduces to a constant for finite X. However, if we take

k → 0 after shifting X, which is imaginary in these cases, by iK ′(→ i∞), the ratio of ϑ0’s

becomes a ratio of the hyperbolic functions. For k = 1 with q → 1 as in 1-1 (iii) and 2-2

(iii), by making use of the modular transformation τ → −1/τ , one finds that for finite X

the ratio of ϑ0’s becmes a ratio of the hyperbolic functions. However, if we take k → 1

after shifting X by K(→ ∞), which is allowed in these cases, the ratio of ϑ0’s becomes a

constant. Thus, depending on the way to take the limit, the degenerate solutions reduce

to (a) the known solutions with ϕj , ϕ
σ
j ∼ const.×(exponentials), or (b) the solutions with

ϕj , ϕ
σ
j ∼ (ratio of hyperbolic functions)×(exponentials). In the latter case, the potential u

is not constant, and the minimal surface spanned by Y is not flat. We call the former type

“exponential solution”, and the latter “hyperbolic solution”.

The third type is the solution with A1 = A2, which we have not considered so far, since

the normalization condition (2.11) becomes singular. In this case, (2.12) implies that the

only possibilities to satisfy the normalization condition of ϕ is k = 0, 1 or A1,2 = 0, since the

X-dependence has to be canceled. Thus, cases 2-2 (i), 4-4 (i) are excluded, though we left

them in the table taking into account a possibility that they could be regarded as limiting

cases. When A1,2 = 0, the solutions reduce to the exponential type. When k = 0, 1, as dis-

cussed above, the solutions become of the exponential or the hyperbolic/trigonometric type.

In the latter case, it turns out that one has to set A1 = A2 = 0 to satisfy the normalization

condition. In sum, if A1 = A2, only the solutions of the exponential type are allowed.

For k = 0, 1 or A1 = A2, one may take appropriate limits from the generic cases to

write down the solutions. However, it is more straightforward to start with the generic

form of the solutions in these cases, and determine them as in section 2.

3.4 SU(1, 1) case

So far, we have considered the case where ϕ ∈ SL(2, R). As discussed in section 2, there is

another case with ϕ ∈ SU(1, 1). The reality and Virasoro conditions are analyzed similarly.

First, from the reality condition (II) in (2.24), one finds that there are four cases
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of (X,Aj):

(1′) X ∈ iR or iR + K and Aj = aj (aj ∈ R) ,

(2′) X ∈ iR or iR + K and Aj = aj + iK ′ (aj ∈ R) ,

(3′) X ∈ R or R + iK ′ and Aj = iaj (aj ∈ R) ,

(4′) X ∈ R or R + iK ′ and Aj = iaj + K (aj ∈ R) ,

(3.7)

In addition, the normalization constants should satisfy r∗j = ±rσ
j and the exponentials

in ϕj and ϕσ
j should be complex conjugate to each other (after the possible shifts of

iK ′ in (X,Aj)).

In any of these cases, the combinations of p±j and U± satisfy the same relations as the

corresponding ones in the SL(2, R) case. For example, in case (1′), (p+
j /U+)∗ = p−j /U−,

though p±j , U± have different relations (p+
j )∗ = −p−j and (U+)∗ = −U−. Thus, the con-

straints from the reality condition are the same.

The Virasoro condition is irrelevant of which embedding we use, SL(2, R) or SU(1, 1).

Therefore, the allowed cases are read off from the same table as in the SL(2, R) case in

section 3.3. In the SU(1, 1) case, the condition on rj, r
σ
j implies

r1r
σ
1 r2r

σ
2 ≤ 0 . (3.8)

This may give further constraints on the parameters, e.g., on X0. When r1r
σ
1 < 0 and

r2r
σ
2 > 0, we need to exchange ϕ1, ϕ

σ
1 and ϕ2, ϕ

σ
2 .

4 Examples of solutions

Our main motivation to studying the AdS string solutions is the application to the scat-

tering amplitudes in the super Yang-Mills theory. With this in mind, we discuss the

obtained solutions.

4.1 Searching for cusp solutions

Before going into details, let us summarize some general properties of the solutions in rela-

tion to the cusp solutions with null boundaries. First, when ϕ ∈ SU(1, 1), the exponential

part of ϕ is complex and, since, e.g., Y−1 = Reϕ1, the solutions are generally rapidly os-

cillating near the world-sheet boundary |σ±| ≫ 1. Thus, to search for the cusp solutions,

one should look into the case with ϕ ∈ SL(2, R) (unless the world-sheet is consistently

restricted). This case also includes oscillating solutions. For example, in case (2) with real

X in (3.1), the solution has a factor ϑ2(X + a) and this is oscillating. In case (1) with

real X, the solution has an oscillating factor ϑ0(X + a) but, since this does not change

the sign, the oscillation is harmless (as can be checked by the modular transformation).

For imaginary X, if the solutions contain the factors of ϑ0,1, they oscillate, whereas if the

factors are ϑ2,3, they do not. The limiting cases with k = 0, 1 are similarly considered.

Once one finds the solutions which grow large without harmful oscillation near the

world-sheet boundary, they are good candidates of the cusp solutions. Though some of
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the cusps are generally at the infinity in the boundary Poincaré coordinates, x± = (Y1 ±
Y0)/(Y−1 + Y2), they can be brought to finite points by an SL(2, R) transformation:

Y = UϕV , U =

(

a b

c d

)

, V =

(

δ −β

−γ α

)

, (4.1)

with det U = det V = 1. To see this, we trace a contour with a large radius in the world-

sheet. Supposed that one of ϕj , ϕ
σ
j alternatively becomes dominant along the contour, one

finds that the contour is mapped to a rectangular in the x±-plane which has null boundaries

and four cusps at (x+, x−) = ( c
a ,−β

δ ), ( c
a ,−α

γ ), (d
b ,−α

γ ), (d
b ,−β

δ ). If ϕ shows a more intricate

behavior, more cusps and null boundaries may appear. We note that one should choose the

SL(2, R) transformation so that the Poincaré radial coordinate 1/(Y−1+Y2) is non-negative:

otherwise, the interpretation of the solution in the Poincaré corrdinates may be subtle.

4.2 Elliptic solutions

From the discussion in the above, we find that the elliptic solutions in 1-2 (iii) and 3-4 (ii)

are harmfully oscillating solutions. However, in the limit k → 1 for 1-2 (iii) and k → 0 for

3-4 (ii), they become the exponential or the hyperbolic solutions in which the oscillation

disappears. This is because, e.g., for 1-2 (iii), the period of the oscillation is of order K,

and this is diverging as k → 1; only the strip with the width of order K survives after

taking the limit. Conversely, this shows that unwanted oscillation might be eliminated by

restricting the world-sheet in some region. In our case, simply taking the world-sheet to

be the strip does not give cusp solutions with null boundaries, since the two sides of the

strip are mapped to the boundary of the surface in AdS which is not null. However, this

may be a useful tip to further search for the cusp solutions. These elliptic solutions are

regarded as elliptic generalizations of the known exponential solutions.

4.3 Degenerate solutions

The degenerate solutions of the hyperbolic/trigonometic type with k = 0, 1 are new solu-

tions. As mentioned at the end of section 3.3, instead of taking appropriate limits from

the generic cases, one may start with the generic form of the solutions in this case,

ϕj = rj
cosh(µ+σ+ + µ−σ− + αj)

cosh(µ+σ+ + µ−σ−)
ep+

j σ++p−j σ− ,

ϕσ
j = rσ

j

cosh(µ+σ+ + µ−σ− − αj)

cosh(µ+σ+ + µ−σ−)
e−(p+

j σ++p−j σ−), (4.2)

and determine them as in section 2. Indeed, one finds that the normalization condition

and the equations of motion give

1 = r1r
σ
1 + r2r

σ
2 , 0 = r1r

σ
1 sinh2 α1 + r2r

σ
2 sinh2 α2 , (4.3)

and

p+
1 p−1 = p+

2 p−2 , 0 = (p+
j µ− + p−j µ+) tanh αj + 2µ+µ− (j = 1, 2) , (4.4)
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respectively, whereas the Virasoro condition imposes

0 = (p±1 )2r1r
σ
1 + (p±2 )2r2r

σ
2 ,

0 = (p±1 )2 − (p±2 )2 + 2µ±
(

p±1
tanh α1

− p±2
tanh α2

)

. (4.5)

Since we are interested in the cusp solutions with real ϕ, we impose the reality condition

(p±j )∗ = p∓j , (µ±)∗ = µ∓. It turns out that the solutions to the constraints (4.3)–(4.5) are

essentially unique (up to conformal transformations of σ± etc.), and given by

µ± =
1√
2

e±iθ , p±1 = 1 , p±2 = ∓i , r1r
σ
1 = r2r

σ
2 =

1

2
,

tanh α1 = − 1√
2 cos θ

, tanh α2 =
1√

2 sin θ
. (4.6)

These give a class of real and non-oscillating solutions of the form,

ϕ1 =
1√

cos 2θ

(

cos θ − 1√
2

tanhB

)

et,

ϕσ
1 =

1√
cos 2θ

(

cos θ +
1√
2

tanhB

)

e−t,

ϕ2 =
1√

cos 2θ

(

sin θ +
1√
2

tanh B

)

es, (4.7)

ϕσ
2 =

−1√
cos 2θ

(

sin θ − 1√
2

tanh B

)

e−s,

where B = cos θ√
2

t− sin θ√
2

s, σ± = (t± is)/2, and we have assumed cos 2θ > 0. (The case with

cos 2θ < 0 is similar.) The potential u reads

u = − tanh2 B . (4.8)

This class of solutions includes solutions which have four cusps, two horns and six

null boundaries, among which two pairs are collinear. We remark that all the boundaries

are null. To check these properties, we first restrict to the case where cos θ > 1/
√

2 so

that the Poincaré radial coordinate r = 1/ϕ1 is non-negative. (In the other case with

cos θ < −1/
√

2, we have only to flip the signs of rj , r
σ
j .) Next, we note that the AdS

boundary is given by |Y−1 +iY0| → ∞. Plugging the solution (4.7) into |Y−1 +iY0|, we then

find that the world-sheet boundary where |t| or |s| → ∞ is mapped to the AdS boundary

unless cos θ, sin θ = 0,± 1√
2
. When θ takes such a generic value, similarly to the discussion

in section 4.1 we find that the image of the world-sheet boundary traces six null segments in

the (x+, x−)-plane. Concretely, the contour t = ρ sin ω, s = ρ cos ω with ρ → ∞ is mapped

to (−∞, 0) → (∞, 0) → (0, 0) → (0,−∞) → (0,∞) → (−∞,∞) → (−∞, 0) as ω varies

from 0 to 2π. The resultant boundary of the surface is not convex, but crossed and folded

as in figure 1. Among the six end-points of the segments, (0, 0), (0,−∞), (−∞,∞), (−∞, 0)

are the cusps and (∞, 0), (0,∞) are the tips of the two horns. The essence in producing the

six null boundaries is that the change of the sign of tanhB “splits” the cusps, which, in the
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Figure 1. Boundary of minimal surface described by (4.7) in (x+, x
−

)-plane. A contour with a

large radius in the world-sheet is mapped to the (x+, x
−

)-plane along the arrows.

x±-plane, is observed as the transitions (−∞, 0) → (+∞, 0) and (0,−∞) → (0,+∞). In

these transitions, the surface boundary has to keep touching the AdS boundary. Since the

solution has two pairs of collinear null boundaries, one expects that it gives the scattering

amplitudes at strong coupling in a collinear limit.

When sin θ = 0, the surface boundaries mapped from t = 0 do not reach the AdS

boundary, and they form two boundaries inside AdS3. Consequently, the solution describes

a surface which has four null boundaries at the AdS boundary, and two boundaries inside

AdS. The surface pinches at a point where these two boundaries intersect each other. The

shape of the surface is obtained by diagonally cutting a four-cusp surface and twisting it.

From the potential in (4.8), one finds that the surface has non-trivial curvature. This

shows a clear difference from the four-cusp solution in [1, 12], where the potential is constant

and hence the corresponding surface is flat. In fact, the two solutions are not related to each

other by simple transformations: First, they cannot be related by an SO(2, 2) transforma-

tion, since the potential u = −∂+
~Y ·∂−~Y is invariant. Second, as long as we work with the

Euclidean world-sheet, the allowed world-sheet analytic continuation is the continuation of

both t and s, which results in ∂± → ±i∂±. Thus, u is invariant up to a sign and renaming

the world-sheet coordinates. Third, one may generate a new solution by a target-space an-

alytic continuation such as Ya → iYa together with the world-sheet analytic continuation

as in [17]. However, the potential should again be invariant (up to a sign and renaming of

the world-sheet coordinates) in order to keep the equations of motion invariant. Finally,

if the potential u has a factorized form f(σ+)g(σ−), it may be brought to a constant by a

world-sheet conformal transformation, but this is not possible for the degenerate solution.
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5 Adding S1: elliptic four-cusp solutions

The analysis so far can be generalized to the case of the strings in AdS5 × S5. Here, for

simplicity, we consider the case of AdS3 × S1.

In an appropriate gauge, the S1 field is set to be W = κ+σ+ + κ−σ−. The reality of

W requires (κ+)∗ = κ−. Adding S1 does not change the reality condition on Y , but that

changes the Virasoro constraints to

2
∑

j=1

∂±ϕj∂±ϕσ
j = κ2

± . (5.1)

Similarly to the case without S1, linear combinations of these give

u0 = 2

(

1

sn2A1
+

1

sn2A2
− 1 − k2

)

−
(

U−

U+
κ2

+ +
U+

U−κ2
−

)

, (5.2)

2U+U− sn2A1 sn2A2

sn2A2 − sn2A1

2
∑

j=1

(−)j+1 cn Aj dnAj

sn3Aj
(β+

j − β−
j ) =

(

U−

U+
κ2

+ − U+

U−κ2
−

)

.

Because of the change of the Virasoro constraints, the allowed solutions for Y also

change. Though they can be classified as in section 3, we do not go into details. However,

we know that, in order to find cusp solutions, we have only to look into the cases without

harmful oscillation. Among the elliptic cases, they are 1-1 or 3-3 in section 3.2, which are

related to each other by the modular transformation. In the following, we take 3-3. It

turns out that this case indeed gives four-cusp solutions with null boundaries which are

expressed by the elliptic functions.

For example, for k = 0.7, U± = i, A1 = iK ′/2, κ± =
√

12/5(1± i), the Virasoro condi-

tion gives A2 = 1.277 . . . and u0 = −4.781 . . . . Further setting X0 = 0, the theta function

takes the form ϑ0(X + ia) = ϑ3(it + ia). By repeating the shifts in the imaginary direc-

tion as in (A.4), one then finds that the ratio of the theta functions shows an exponential

behavior ϑ0(X + A)/ϑ0(X) ∼ eπat/(2KK ′). Thus, along a contour with a large radius in

the world-sheet, one of ϕj , ϕ
σ
j alternatively becomes dominant. Since this shows that the

mechanism in section 4.1 works in this case, the solution describes a surface with four null

boundaries and four cusps. The points of the cusps in the x±-plane can be brought to

finite points as in section 4.1.

Since the Virasoro constraints are changed, the surface spanned by the solution is not

necessarily space-like anymore. This can be checked by considering the normal vector to the

surface Na := u−1ǫabcdY
b∂+Y c∂−Y d, the norm of which is N2 = 1− κ2

+κ2
−/u2 . Evaluating

u = 2k2sn2X + u0 in this example shows that N2 < 0 and hence the surface is time-like.

6 Discussion

We have systematically searched for the classical open string solutions in AdS3 within the

genus-one finite-gap solutions, and given a classification of the allowed solutions. When the

elliptic modulus degenerates, we have found a class of solutions with six null boundaries,

– 15 –



J
H
E
P
1
0
(
2
0
0
9
)
0
0
1

among which two pairs are collinear. Adding S1 to AdS3, we have also found solutions

expressed by the elliptic functions, which have four cusps and four null boundaries.

The analysis in this paper can straightforwardly be applied to the case with the

Lorentzian world-sheet. It may also be useful for studying the classical solutions describing

the Wilson loops in the super Yang-Mills theory at strong coupling [18, 19]. The classical

open string solutions in AdS5 ×S5 are similarly discussed. In particular, for the strings in

AdS5, we have only to add another pair of ϕ3, ϕ
σ
3 . In this case, these are identified with a

complex combination of the embedding coordinates in AdS5 as ϕ3, ϕ
σ
3 = Y3± iY4, and thus

the solutions are generally (harmfully) oscillating as in the SU(1, 1) case in section 3.4.

In such oscillating cases, a way to remove the unwanted oscillation is to restrict the

world-sheet, as mentioned in section 4.2. Though it is still non-trivial to find desired

solutions with cusps and null boundaries, the prescription in [13] suggests that effectively

restricting the world-sheet by conformal transformations deserves further consideration.

The essence of the solution with six null boundaries in section 4.3 is the change of

the sign of tanh B in front of the exponentials, which “splits” the cusps. Similarly, more

intricate behavior of the corresponding factors in the higher-genus cases may produce solu-

tions with more null boundaries. It is interesting to consider the relation to the mechanism

provided in [13].

Most of the end points of the null segments in our solutions with six null boundaries

are located at the infinity of the AdS3 boundary. Since the surface is space-like, this is

inevitable in the AdS3 boundary. However, it is desirable to bring them to finite points in

the AdS5 boundary by some transformations, as discussed in [13]. This may be a first step

toward applications to the scattering amplitudes. We would like to report progress in the

analysis of the higher-genus finite-gap solutions, multi-cusp solutions and the applications

to the scattering amplitudes, elsewhere.
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A Elliptic theta functions

Our conventions of the elliptic theta functions are:

θab(w, τ) :=

∞
∑

n=−∞
exp

[

πi

(

n +
a

2

)2

τ + 2πi(n + a)

(

w +
b

2

)]

, (A.1)

and

ϑ0(z) := θ01(w, τ) , ϑ1(z) := −θ11(w, τ) , ϑ2(z) := θ10(w, τ) , ϑ3(z) := θ00(w, τ) , (A.2)

where w = z/(2K) and K(k) is the complete elliptic integral of the first kind.
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In the main text, we use the formulas

Z(u + v) = Z(u) + Z(v) − k2sn u sn v sn(u + v) , (A.3)

where Z(z) := ∂z lnϑ0(z), and

ϑ0(u ± K) = ϑ3(u) ,

ϑ0(u ± iK ′) = ±ie−πi(± u
2K

+ τ
4
)ϑ1(u) , (A.4)

ϑ0(u ± (K + iK ′)) = e−πi(± u
2K

+ τ
4
)ϑ2(u) .
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